Objectif : comprendre la répétition d’un motif simple avec rotation.
Consigne :
Crée un script qui dessine un carré, puis tourne légèrement avant de recommencer.
Tu obtiens ainsi une figure “en étoile”.
Bloc à compléter :
quand drapeau vert cliqué
stylo en position d’écriture
effacer tout
répéter 12 fois
répéter 4 fois
avancer de 50
tourner de 90 degrés
fin répéter
tourner de … degrés
fin répéter
Questions :
Quelle valeur faut-il donner à l’angle de rotation pour que la figure soit bien répartie sur un tour complet ?
Que se passe-t-il si tu choisis 15° pour cet angle manquant ?
Pourquoi a-t-on à la fin du programme ajouter "relever le stylo" puis aller à x=-150 , y=0 (ou d'autres valeurs) ? dans quel but ?
Objectif : combiner boucles et angles pour créer une symétrie régulière.
Consigne :
Tu veux dessiner 8 triangles équilatéraux formant une rosace.
quand drapeau vert cliqué
effacer tout
stylo en position d’écriture
répéter 8 fois
répéter 3 fois
avancer de 60
tourner de 120 degrés
fin répéter
tourner de … degrés
fin répéter
Questions :
Calcule l’angle de rotation entre deux triangles.
Modifie le nombre de triangles (6 ou 12) et observe ce qui change.
L’angle entre les carrés doit être
car le tour complet est de .
En remplaçant :
tourner de 30 degrés
on obtient un motif étoilé régulier.
ou ceci suivant la position initiale du lutin.
Si après avoir réalisé la figure, on ne fait pas décaler le lutin après avoir relevé le stylo, le lutin reste au dessus de la figure et en cache une partie comme ci-dessous.
👉 Si tu choisis 15°, les carrés se chevauchent davantage et forment un genre de spirale.
ou suivant la position initiale du lutin :
Si on désire poursuivre la figure pour couvrir les 360°, il faut répéter 24 fois la boucle.
On veut 8 triangles autour du centre :
.
Chaque triangle est équilatéral (angle de 120° dans la petite boucle).
Résultat : une rosace harmonieuse.
et le lutin reste sur la figure...ajoute deux commandes pour sortir le lutin de la figure construite, ce qui donne
Comme on a choisi de dessiner 8 triangles équilatéraux, ceux-ci se superposent car un tour complet fait 360 degrés et .
👉 Si tu choisis 6 triangles, l’angle devient car et la figure est un hexagone régulier.
Si tu choisis 12 triangles équilatéraux avec un décalage à chaque fois de 30°, voici ce que tu trouves :