Utiliser des grandeurs produits et des grandeurs quotients

icône de pdf
Signaler

Rappels de cours

1 Grandeur composée produit

Une grandeur composée produit est une grandeur obtenue en multipliant d’autres grandeurs.

exemples

  • Une aire est le produit de deux longueurs.
  • Un volume est le produit de trois longueurs.
  • Une puissance électrique est le produit d’une tension (une différence de potentiel) et d’une intensité.

2 Grandeur composée quotient

Une grandeur composée quotient est une grandeur obtenue en divisant deux autres grandeurs.

exemples

  • Une vitesse est le quotient d’une distance (une longueur) par un temps.
  • Un débit est le quotient d’un volume par un temps (une durée).
  • Une masse volumique est le quotient d’une masse par un volume.

Méthodes

Calculer le volume d’un pavé droit

Un aquarium ayant la forme d’un parallélépipède rectangle a les dimensions suivantes : longueur : 75 cm  largeur : 3,5 dm et hauteur : 0,5 m.

Quel volume maximal d’eau peut-il contenir ? Le résultat sera donné en litres.

Repère
Conseils

Exprimez les trois longueurs dans la même unité, le cm par exemple. Le résultat sera alors en cm3. Il faudra ensuite transformer les cm3 en litres.

 

Repère
Solution

Nous avons : L = 75 cm  l = 3,5 dm = 35 cm et h = 0,5 m = 50 cm.

Alors le volume V cherché est donné par la formule V=L×l×h, soit V=75×35×50 ou encore V=131250cm3.

Conclusion : V=131,25dm3. Puisque 1 dm3 = 1 L, on a : V=131,25litres.

Calculer un débit

Léna a décidé de vider sa piscine avec une pompe électrique. La piscine contient 62 m3 d’eau. Elle est entièrement vide au bout de 1 jour et 48 minutes.

Quel est, en litres par heure, le débit de la pompe utilisée ?

Repère
Conseils

Exprimez le volume d’eau en litres et la durée en heures.

 

Repère
Solution

Le débit correspond à un volume de liquide par unité de temps.

Il est donné par la relation D=VtD représente le débit de la pompe, V le volume d’eau à pomper et t la durée de l’opération.

Nous avons : V=62m3=62000litres puisque 1m3=1000litres et t=(24+4860)heures, soit t=24,8h. Alors D=6200024,8, soit D=2500 litres par heure (2 500 L/h).

Calculer une masse volumique

Marius possède de nombreuses boules de pétanque. Le diamètre de chacune est de 72 mm et la masse de 0,720 kg.

Calculer en g/cm3 la masse volumique d’une boule de pétanque.

Repère
Solution

La masse volumique correspond à une masse par unité de volume. Appliquons la relation ρ=mvρ représente la masse volumique, m la masse de la boule de pétanque et v son volume.

Nous avons : m=0,720kg, soit m=720 g.

De plus, le rayon r de la boule mesure 36 mm ou encore 3,6 cm.

Alors v=43×π×r3=43×π×3,63, soit v=195,432cm3.

Alors ρ=mv=720195,432 ou encore ρ=3,7g/cm3 (valeur arrondie au dixième).