Calculer un taux dévolution

icône de pdf
Signaler

Un taux dévolution n'est rien d'autre qu'un pourcentage.

Exemple : Une population passe de 120 000120~000 habitants à 135 000135~000 habitants sur 1010 ans. Quel a été le taux dévolution de cette population sur ces dix années ?

Solution 1 : (en utilisant un coefficient multiplicateur)

On remarque que la population a augmenté. On va donc trouver un taux correspondant à une augmentation.

Calculons le coefficient multiplicateur CMCM associé à cette augmentation.

CM=135 000120 000=1,125=1+0,125=1+12,5100CM=\dfrac{135~000}{120~000}=1,125=1+0,125=1+\dfrac{12,5}{100}

L'augmentation est donc de 12,5100\dfrac{12,5}{100} soit 12,5%12,5\%.

Autre manière de calculer un taux d'évolution (calcul direct)

Solution 2 :

Un taux d'évolution se calcule toujours par rapport à la valeur initiale. Reprenons l'exemple précédent.

\checkmark Une population passe de 120 000120~000 habitants à 135 000135~000 habitants. Nous avons donc une augmentation.

Le taux d'évolution est : t=valeur finale  valeur initiale valeur initialet=\dfrac{\text{valeur finale }-\text{ valeur initiale}}{\text{ valeur initiale}}

Ici : t=135 000120 000120 000=15 000120 000t=\dfrac{135~000-120~000}{120~000}=\dfrac{15~000}{120~000}

t=15120=0,125t=\dfrac{15}{120}=0,125 soit 12,5100=12,5%\dfrac{12,5}{100}=12,5\%

On retrouve bien une augmentation de 12,5%12,5\%.

\checkmark Les années suivantes, la population passe de 135 000135~000 habitants à 130 000130~000 habitants. Quel est le taux d'évolution ? On a une baisse.

Le taux d'évolution est : t=valeur finale  valeur initiale valeur initialet'=\dfrac{\text{valeur finale }-\text{ valeur initiale}}{\text{ valeur initiale}}

Ici : t=130 000135 000135 000=5000135 000=5135=0,037=3,7%t'=\dfrac{130~000-135~000}{135~000}=\dfrac{-5000}{135~000}=\dfrac{-5}{135}=-0,037=-3,7\%

On remarque que cette fois, le taux dévolution est négatif.

On trouve une baisse de 3,7%3,7\%.