Une grandeur quotient : la masse volumique

icône de pdf
Signaler

I. Définition et nature de la grandeur

La masse volumique est une grandeur quotient : elle exprime la masse d’une substance contenue dans une unité de volume.

\circ Formule : ρ=mV\rho = \frac{m}{V}
ρ\rho : masse volumique, mm : masse (en kgkg ou gg), VV : volume (en m3m^3 ou cm3cm^3)

II. Unités et conversions

\circ Unités usuelles :

  • kg/m3kg/m^3 (unité du Système international)

  • g/cm3g/cm^3 (fréquent en physique-chimie)

\circ Conversions utiles :

  • 1g/cm3=1000 kg/m31g/cm^3 = 1000~kg/m^3

  • 1L=1000 cm31L = 1000~cm^3

III. Exemples d’usage courant

\circ Un cube de métal a une masse de 2kg2kg et un volume de 0,00025m30{,}00025m^3
ρ=20,00025=8000kg/m3 \rho = \dfrac{2}{0{,}00025} = 8000kg/m^3

\circ L’eau a une masse volumique de 1g/cm31g/cm^3, soit 1000 kg/m31000~kg/m^3

IV. Problèmes classiques rencontrés

\circ Calcul de la masse, du volume ou de la masse volumique d’un corps

\circ Vérification de la nature d’un matériau à partir de sa masse volumique

V. Contrôle de la cohérence des résultats

\circ Vérifier que l’unité obtenue est bien celle d’une masse divisée par un volume (ex. : kg/m3kg/m^3)

\circ Exemples d’erreurs fréquentes :

  • Mélanger cm3cm^3 et m3m^3 sans conversion

  • Diviser le volume par la masse au lieu de l’inverse