Entraînement

Les racines carrées et leurs propriétés (3)

Signaler

Énoncé

Exercice 1


• Prouver que 45=35\sqrt{45}=3\sqrt{5} .
• Prouver que 24=26\sqrt{24}=2\sqrt{6} .
• Mettre 525\sqrt{2} sous la forme d'une racine carrée.

Exercice 2


Calculer les expressions suivantes :
A = 8×2\sqrt{8}\times\sqrt{2}
B = 32×514×73\sqrt{2}\times5\sqrt{14}\times\sqrt{7}
C = 37252\dfrac{3\sqrt{72}}{5\sqrt{2}}
D = 2×3\sqrt{2} \times \sqrt{3}
E = 73237\sqrt{3}-2\sqrt{3}
F = 5018+72\sqrt{50}-\sqrt{18}+\sqrt{72}
G = 75+22712\sqrt{75}+2\sqrt{27}-\sqrt{12}
H = 3×12\sqrt{3}\times\sqrt{12}
I = 2×0,02\sqrt{2}\times\sqrt{0,02}
J = 3×23×27×57\sqrt{3}\times2\sqrt{3}\times2\sqrt{7}\times5\sqrt{7}
K = 3×27\sqrt{3}\times\sqrt{27}
L = 17×63\sqrt{\dfrac{1}{7}}\times\sqrt{63}
M = 76×214×2118×367\dfrac{\sqrt{7}}{\sqrt{6}}\times\dfrac{\sqrt{2}}{\sqrt{14}}\times\dfrac{\sqrt{21}}{\sqrt{18}}\times\dfrac{\sqrt{36}}{\sqrt{7}}
N = 9+4+25\sqrt{9}+\sqrt{4}+\sqrt{25}
O = 64+36\sqrt{64+36}

Exercice 3


Factoriser les expressions suivantes :
A = x22x^2-2
B = 4x254x^2-5

Exercice 4


Écrire sans radical les nombres suivants :
25=\sqrt{25}=
0=\sqrt{0}=
1=\sqrt{1}=
72=\sqrt{7^2}=
381=3\sqrt{81}=
(5)2=(\sqrt{5})^2=
(32)2=(3\sqrt{2})^2=
(3)2=(-\sqrt{3})^2=
(5)4=(-\sqrt{5})^4=
(2)6=\sqrt{(-2)^6}=
Le nombre aa étant positif, a6=\sqrt{a^6}=

Exercice 5


Développer les produits suivants et simplifier-les si possible :
A = (73)(7+3)(\sqrt{7}-3)(\sqrt{7}+3)
B = (5+2)2(\sqrt{5}+\sqrt{2})^2
C = (8+2)2(\sqrt{8}+\sqrt{2})^2
D = (32+23)2(3\sqrt{2}+2\sqrt{3})^2
E = (25)(2+5)(\sqrt{2}-5)(\sqrt{2}+5)
F = (23+1)2(2\sqrt{3}+1)^2

Révéler le corrigé

Exercice 1


45=9×5=95=35\sqrt{45}=\sqrt{9\times5}=\sqrt{9}\sqrt{5}=3\sqrt{5}
24=4×6=46=26\sqrt{24}=\sqrt{4\times6}=\sqrt{4}\sqrt{6}=2\sqrt{6}
52=252=25×2=505\sqrt{2}=\sqrt{25}\sqrt{2}=\sqrt{25\times2}=\sqrt{50}

Exercice 2


A = 8×2=8×2=16=4\sqrt{8}\times\sqrt{2}=\sqrt{8\times2}=\sqrt{16}=4
B = 32×514×7=3×5×2×14×7=15196=15×14=2103\sqrt{2}\times5\sqrt{14}\times\sqrt{7}=3\times5\times\sqrt{2\times14\times7}=15\sqrt{196}=15\times14=210
C = 37252=35×722=35×36=35×6=185\dfrac{3\sqrt{72}}{5\sqrt{2}}=\dfrac{3}{5}\times\sqrt{\dfrac{72}{2}}=\dfrac{3}{5}\times\sqrt{36}=\dfrac{3}{5}\times6=\dfrac{18}{5}
D = 2×3=6\sqrt{2}\times\sqrt{3}=\sqrt{6}
E = 7323=537\sqrt{3}-2\sqrt{3}=5\sqrt{3}
F = 5018+72=25×29×2+36×2=5232+62=82\sqrt{50}-\sqrt{18}+\sqrt{72}=\sqrt{25\times2}-\sqrt{9\times2}+\sqrt{36\times2}=5\sqrt{2}-3\sqrt{2}+6\sqrt{2}=8\sqrt{2}
G = 75+22712=25×3+29×34×3=53+6323=93\sqrt{75}+2\sqrt{27}-\sqrt{12}=\sqrt{25\times3}+2\sqrt{9\times3}-\sqrt{4\times3}=5\sqrt{3}+6\sqrt{3}-2\sqrt{3}=9\sqrt{3}
H = 3×12=36=6\sqrt{3}\times\sqrt{12}=\sqrt{36}=6
I = 2×0,02=0,04=4×102=4×102=2×101=0,2\sqrt{2}\times\sqrt{0,02}=\sqrt{0,04}=\sqrt{4\times10^{-2}}=\sqrt{4}\times\sqrt{10^{-2}}=2\times10^{-1}=0,2
J = 3×23×27×57=232×2×572=2×3×10×7=420\sqrt{3}\times2\sqrt{3}\times2\sqrt{7}\times5\sqrt{7}=2\sqrt{3}^2\times2\times5\sqrt{7}^2=2\times3\times10\times7=420
K = 3×27=3×9×3=332=9\sqrt{3}\times\sqrt{27}=\sqrt{3}\times\sqrt{9\times3}=3\sqrt{3}^2=9
L = 17×63=637=9=3\sqrt{\dfrac{1}{7}}\times\sqrt{63}=\sqrt{\dfrac{63}{7}}=\sqrt{9}=3
M = 76×214×2118×367=7×2×21×366×14×18×7=1\dfrac{\sqrt{7}}{\sqrt{6}}\times\dfrac{\sqrt{2}}{\sqrt{14}}\times\dfrac{\sqrt{21}}{\sqrt{18}}\times\dfrac{\sqrt{36}}{\sqrt{7}}=\sqrt{\dfrac{7\times2\times21\times36}{6\times14\times18\times7}}=1
N = 9+4+25=3+2+5=10\sqrt{9}+\sqrt{4}+\sqrt{25}=3+2+5=10
O = 64+36=100=10\sqrt{64+36}=\sqrt{100}=10

Exercice 3


A=x22A=x^2-2
En remarquant que 2=(2)22=(\sqrt{2})^2, on reconnaît a2b2=(ab)(a+b)a^2-b^2=(a-b)(a+b)
A=(x2)(x+2)A=(x-\sqrt{2})(x+\sqrt{2})

B=4x25B=4x^2-5
En remarquant que 5=(5)25=(\sqrt{5})^2, on reconnaît a2b2=(ab)(a+b)a^2-b^2=(a-b)(a+b)
B=(2x5)(2x+5)B=(2x-\sqrt{5})(2x+\sqrt{5})

Exercice 4


25=5\sqrt{25}=5
0=0\sqrt{0}=0
1=1\sqrt{1}=1
72=7\sqrt{7^2}=7
381=273\sqrt{81}=27
(5)2=5(\sqrt{5})^2=5
(32)2=18(3\sqrt{2})^2=18
(3)2=3(-\sqrt{3})^2=3
(5)4=25(-\sqrt{5})^4=25
(2)6=8\sqrt{(-2)^6}=8
a6=a3\sqrt{a^6}=a^3

Exercice 5


A = (73)(7+3)=7232=79=2(\sqrt{7}-3)(\sqrt{7}+3)=\sqrt{7}^2-3^2=7-9=-2

B = (5+2)2=52+252+22=5+210+2=7+210(\sqrt{5}+\sqrt{2})^2=\sqrt{5}^2+2\sqrt{5}\sqrt{2}+\sqrt{2}^2=5+2\sqrt{10}+2=7+2\sqrt{10}

C = (8+2)2=82+282+22=8+216+2=10+8=18(\sqrt{8}+\sqrt{2})^2=\sqrt{8}^2+2\sqrt{8}\sqrt{2}+\sqrt{2}^2=8+2\sqrt{16}+2=10+8=18

D=(32+23)2=(32)2+2×32×23+(23)2=18+126+12=30+126D = (3\sqrt{2}+2\sqrt{3})^2=(3\sqrt{2})^2+2\times3\sqrt{2}\times2\sqrt{3}+(2\sqrt{3})^2=18+12\sqrt{6}+12=30+12\sqrt{6}

E = (25)(2+5)=2252=225=23(\sqrt{2}-5)(\sqrt{2}+5)=\sqrt{2}^2-5^2=2-25=-23

F = (23+1)2=(23)2+2×23×1+12=12+43+1=13+43(2\sqrt{3}+1)^2=(2\sqrt{3})^2+2\times2\sqrt{3}\times1+1^2=12+4\sqrt{3}+1=13+4\sqrt{3}

Voir le contenu associé