I. Propriétés générales ∘ \circ\quad ∘ Symétrie : Pour tous vecteurs u → \overrightarrow{u} u et v → \overrightarrow{v} v , on a :
u → ⋅ v → = v → ⋅ u → \overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u} u ⋅ v = v ⋅ u .
∘ \circ\quad ∘ Bilinéarité : Pour tout réel k k k et pour tous vecteurs u → , v → , w → \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} u , v , w , on a :
u → ⋅ ( k v → ) = ( k u → ) ⋅ v → = k ( u → ⋅ v → ) \overrightarrow{u} \cdot (k \overrightarrow{v}) = (k \overrightarrow{u}) \cdot \overrightarrow{v} = k (\overrightarrow{u} \cdot \overrightarrow{v}) u ⋅ ( k v ) = ( k u ) ⋅ v = k ( u ⋅ v ) .
u → ⋅ ( v → + w → ) = u → ⋅ v → + u → ⋅ w → \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} u ⋅ ( v + w ) = u ⋅ v + u ⋅ w .
II. Identités remarquables Soient u → \overrightarrow{u} u et v → \overrightarrow{v} v deux vecteurs, alors :
∘ \circ\quad ∘ ( u → + v → ) 2 = ∣ ∣ u → ∣ ∣ 2 + 2 u → ⋅ v → + ∣ ∣ v → ∣ ∣ 2 (\overrightarrow{u} + \overrightarrow{v})^2 = ||\overrightarrow{u}||^2 + 2 \overrightarrow{u} \cdot\overrightarrow{v} + ||\overrightarrow{v}||^2 ( u + v ) 2 = ∣∣ u ∣ ∣ 2 + 2 u ⋅ v + ∣∣ v ∣ ∣ 2 .
∘ \circ\quad ∘ ( u → − v → ) 2 = ∣ ∣ u → ∣ ∣ 2 − 2 u → ⋅ v → + ∣ ∣ v → ∣ ∣ 2 (\overrightarrow{u} - \overrightarrow{v})^2 = ||\overrightarrow{u}||^2 - 2 \overrightarrow{u} \cdot \overrightarrow{v} + ||\overrightarrow{v}||^2 ( u − v ) 2 = ∣∣ u ∣ ∣ 2 − 2 u ⋅ v + ∣∣ v ∣ ∣ 2 .
∘ \circ\quad ∘ ( u → + v → ) ⋅ ( u → − v → ) = ∣ ∣ u → ∣ ∣ 2 − ∣ ∣ v → ∣ ∣ 2 (\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) = ||\overrightarrow{u}||^2 - ||\overrightarrow{v}||^2 ( u + v ) ⋅ ( u − v ) = ∣∣ u ∣ ∣ 2 − ∣∣ v ∣ ∣ 2 .
III. Formules du produit scalaire en fonction des normes ∘ \circ\quad ∘ u → ⋅ v → = ∣ ∣ u → ∣ ∣ 2 + ∣ ∣ v → ∣ ∣ 2 − ∣ ∣ u → − v → ∣ ∣ 2 2 \overrightarrow{u} \cdot \overrightarrow{v} = \dfrac{||\overrightarrow{u}||^2 + ||\overrightarrow{v}||^2 - ||\overrightarrow{u} - \overrightarrow{v}||^2}{2} u ⋅ v = 2 ∣∣ u ∣ ∣ 2 + ∣∣ v ∣ ∣ 2 − ∣∣ u − v ∣ ∣ 2 .
∘ \circ\quad ∘ u → ⋅ v → = ∣ ∣ u → + v → ∣ ∣ 2 − ∣ ∣ u → ∣ ∣ 2 − ∣ ∣ v → ∣ ∣ 2 2 \overrightarrow{u} \cdot \overrightarrow{v} = \dfrac{||\overrightarrow{u} + \overrightarrow{v}||^2 - ||\overrightarrow{u}||^2 - ||\overrightarrow{v}||^2}{2} u ⋅ v = 2 ∣∣ u + v ∣ ∣ 2 − ∣∣ u ∣ ∣ 2 − ∣∣ v ∣ ∣ 2 .
∘ \circ\quad ∘ u → ⋅ v → = ∣ ∣ u → + v → ∣ ∣ 2 − ∣ ∣ u → − v → ∣ ∣ 2 4 \overrightarrow{u} \cdot \overrightarrow{v} = \dfrac{||\overrightarrow{u} + \overrightarrow{v}||^2 - ||\overrightarrow{u} - \overrightarrow{v}||^2}{4} u ⋅ v = 4 ∣∣ u + v ∣ ∣ 2 − ∣∣ u − v ∣ ∣ 2 .
IV. Exemples de démonstrations ∘ \circ\quad ∘ Démonstration de la première identité remarquable ( u → + v → ) 2 = u → ⋅ ( u → + v → ) + v → ⋅ ( u → + v → ) (\overrightarrow{u} + \overrightarrow{v})^2 = \overrightarrow{u} \cdot (\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{v} \cdot (\overrightarrow{u} + \overrightarrow{v}) ( u + v ) 2 = u ⋅ ( u + v ) + v ⋅ ( u + v ) .
= u → ⋅ u → + u → ⋅ v → + v → ⋅ u → + v → ⋅ v → = \overrightarrow{u} \cdot \overrightarrow{u} + \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{u} + \overrightarrow{v} \cdot \overrightarrow{v} = u ⋅ u + u ⋅ v + v ⋅ u + v ⋅ v .
= ∣ ∣ u → ∣ ∣ 2 + 2 u → ⋅ v → + ∣ ∣ v → ∣ ∣ 2 = ||\overrightarrow{u}||^2 + 2 \overrightarrow{u} \cdot \overrightarrow{v} + ||\overrightarrow{v}||^2 = ∣∣ u ∣ ∣ 2 + 2 u ⋅ v + ∣∣ v ∣ ∣ 2 .
Donc :
2 u → ⋅ v → = ∣ ∣ u → + v → ∣ ∣ 2 − ∣ ∣ u → ∣ ∣ 2 − ∣ ∣ v → ∣ ∣ 2 2 \overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u} + \overrightarrow{v}||^2 - ||\overrightarrow{u}||^2 - ||\overrightarrow{v}||^2 2 u ⋅ v = ∣∣ u + v ∣ ∣ 2 − ∣∣ u ∣ ∣ 2 − ∣∣ v ∣ ∣ 2 .
u → ⋅ v → = ∣ ∣ u → + v → ∣ ∣ 2 − ∣ ∣ u → ∣ ∣ 2 − ∣ ∣ v → ∣ ∣ 2 2 \overrightarrow{u} \cdot \overrightarrow{v} = \dfrac{||\overrightarrow{u} + \overrightarrow{v}||^2 - ||\overrightarrow{u}||^2 - ||\overrightarrow{v}||^2}{2} u ⋅ v = 2 ∣∣ u + v ∣ ∣ 2 − ∣∣ u ∣ ∣ 2 − ∣∣ v ∣ ∣ 2 .
∘ \circ\quad ∘ Démonstration de la deuxième identité remarquable ( u → − v → ) 2 = u → ⋅ ( u → − v → ) + v → ⋅ ( u → − v → ) (\overrightarrow{u} - \overrightarrow{v})^2 = \overrightarrow{u} \cdot (\overrightarrow{u} - \overrightarrow{v}) + \overrightarrow{v} \cdot (\overrightarrow{u} - \overrightarrow{v}) ( u − v ) 2 = u ⋅ ( u − v ) + v ⋅ ( u − v ) .
= u → ⋅ u → − u → ⋅ v → − v → ⋅ u → + v → ⋅ v → = \overrightarrow{u} \cdot \overrightarrow{u} - \overrightarrow{u} \cdot \overrightarrow{v} - \overrightarrow{v} \cdot \overrightarrow{u} + \overrightarrow{v} \cdot \overrightarrow{v} = u ⋅ u − u ⋅ v − v ⋅ u + v ⋅ v .
= ∣ ∣ u → ∣ ∣ 2 − 2 u → ⋅ v → + ∣ ∣ v → ∣ ∣ 2 = ||\overrightarrow{u}||^2 - 2 \overrightarrow{u} \cdot \overrightarrow{v} + ||\overrightarrow{v}||^2 = ∣∣ u ∣ ∣ 2 − 2 u ⋅ v + ∣∣ v ∣ ∣ 2 .
Donc :
− 2 u → ⋅ v → = ∣ ∣ u → − v → ∣ ∣ 2 − ∣ ∣ u → ∣ ∣ 2 − ∣ ∣ v → ∣ ∣ 2 - 2 \overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u} - \overrightarrow{v}||^2 - ||\overrightarrow{u}||^2 - ||\overrightarrow{v}||^2 − 2 u ⋅ v = ∣∣ u − v ∣ ∣ 2 − ∣∣ u ∣ ∣ 2 − ∣∣ v ∣ ∣ 2 .
u → ⋅ v → = ∣ ∣ u → ∣ ∣ 2 + ∣ ∣ v → ∣ ∣ 2 − ∣ ∣ u → − v → ∣ ∣ 2 2 \overrightarrow{u} \cdot \overrightarrow{v} = \dfrac{||\overrightarrow{u}||^2 + ||\overrightarrow{v}||^2 - ||\overrightarrow{u} - \overrightarrow{v}||^2}{2} u ⋅ v = 2 ∣∣ u ∣ ∣ 2 + ∣∣ v ∣ ∣ 2 − ∣∣ u − v ∣ ∣ 2 .