Entraînement

Lien entre développer et factoriser

Signaler

Énoncé

Factoriser les expressions suivantes :

A=3x+21A = 3x + 21
B=4xx2B = 4x - x^2
C=5x+20C = -5x + 20
D=5x28xD = 5x^2 - 8x
E=(x1)(2x+3)(x1)(2x)E = (x - 1)(2x + 3) - (x - 1)(2 - x)
F=(2x+1)2+(2x+1)(x+3)F = (2x + 1)^2 + (2x + 1)(x + 3)
G=(5x2)(2x+7)(5x2)G = (5x - 2)(2x + 7) - (5x - 2)
H=7x49+14x2H = 7x - 49 + 14x^2
I=9x2+12x+4I = 9x^2 + 12x + 4
J=(2x7)(x+4)(2x7)(4x+1)J = (2x - 7)(x + 4) - (2x - 7)(4x + 1)
K=(4x1)2+(2x5)(4x1)K = (4x - 1)^2 + (2x - 5)(4x - 1)
L=(x+7)(3x1)+7x+49L = (x + 7)(3x - 1) + 7x + 49
M=16x281M = 16x^2 - 81
N=49x214N = 49x^2 - \dfrac14
O=9x2+30x+25O = 9x^2 + 30x + 25
P=(2x+3)249P = (2x + 3)^2 - 49

Q=(4x1)2(2x+3)2Q = (4x - 1)^2 - (2x + 3)^2
R=x316xR = x^3 - 16x
S=25x21(4x3)(5x+1)S = 25x^2 - 1 - (4x - 3)(5x + 1)

T=x2+8x+16T = x^2 + 8x + 16
U=4x24x+1U = 4x^2 - 4x + 1
V=x264V = x^2 - 64
W=x2+x+0,25W = x^2 + x + 0,25
X=100x21,000x+2,500X = 100x^2 - 1,000x + 2,500
Y=16x2814Y = 16x^2 - \dfrac{81}{4}
Z=x27Z = x^2 - 7
A=2x2+2A' = 2x^2 + 2
B=(3x1)2(x+2)2B' = (3x - 1)^2 - (x + 2)^2

Révéler le corrigé

A
3x+21=3x+3×7=3(x+7)3x + 21 = 3x + 3 \times 7 = 3(x + 7)

B
4xx2=x(4x)4x - x^2 = x(4 - x)

C
5x+20=5x+5×4=5(x+4)-5x + 20 = -5x + 5 \times 4 = 5(-x + 4)

D
5x28x=x(5x8)5x^2 - 8x = x(5x - 8)

E
(x1)(2x+3)(x1)(2x)(x - 1)(2x + 3) - (x - 1)(2 - x)
=(x1)[(2x+3)(2x)]= (x - 1)[(2x + 3) - (2 - x)]
=(x1)(2x+32+x)= (x - 1)(2x + 3 - 2 + x)
=(x1)(3x+1)= (x - 1)(3x + 1)

F
(2x+1)2+(2x+1)(x+3)(2x + 1)^2 + (2x + 1)(x + 3)
=(2x+1)[(2x+1)+(x+3)]= (2x + 1)[(2x + 1) + (x + 3)]
=(2x+1)(2x+1+x+3)= (2x + 1)(2x + 1 + x + 3)
=(2x+1)(3x+4)= (2x + 1)(3x + 4)

G
(5x2)(2x+7)(5x2)(5x - 2)(2x + 7) - (5x - 2)
=(5x2)[(2x+7)1]= (5x - 2)[(2x + 7) - 1]
=(5x2)(2x+6)= (5x - 2)(2x + 6)
=2(5x2)(x+3)= 2(5x - 2)(x + 3)

H
7x49+14x2=14x2+7x497x - 49 + 14x^2 = 14x^2 + 7x - 49
=7(2x2+x7)= 7(2x^2 + x - 7)

I
9x2+12x+49x^2 + 12x + 4
=(3x)2+2×3x×2+22= (3x)^2 + 2 \times 3x \times 2 + 2^2
=(3x+2)2= (3x + 2)^2

J
(2x7)(x+4)(2x7)(4x+1)(2x - 7)(x + 4) - (2x - 7)(4x + 1)
=(2x7)[(x+4)(4x+1)]= (2x - 7)[(x + 4) - (4x + 1)]
=(2x7)(x+44x1)= (2x - 7)(x + 4 - 4x - 1)
=(2x7)(3x+3)= (2x - 7)(-3x + 3)
=3(2x7)(x+1)= 3(2x - 7)(-x + 1)

K
(4x1)2+(2x5)(4x1)(4x - 1)^2 + (2x - 5)(4x - 1)
=(4x1)[(4x1)+(2x5)]= (4x - 1)[(4x - 1) + (2x - 5)]
=(4x1)(4x1+2x5)= (4x - 1)(4x - 1 + 2x - 5)
=(4x1)(6x6)= (4x - 1)(6x - 6)
=6(4x1)(x1)= 6(4x - 1)(x - 1)

L
(x+7)(3x1)+7x+49(x + 7)(3x - 1) + 7x + 49
=(x+7)(3x1)+7(x+7)= (x + 7)(3x - 1) + 7(x + 7)
=(x+7)(3x1+7)= (x + 7)(3x - 1 + 7)
=(x+7)(3x+6)= (x + 7)(3x + 6)
=3(x+7)(x+2)= 3(x + 7)(x + 2)

M
16x281=(4x)292=(4x9)(4x+9)16x^2 - 81 = (4x)^2 - 9^2 = (4x - 9)(4x + 9)

N
49x214=(7x)2(12)249x^2 - \dfrac14 = (7x)^2 - \left(\dfrac12\right)^2
=(7x12)(7x+12)= \left(7x - \dfrac12\right)\left(7x + \dfrac12\right)

O
9x2+30x+259x^2 + 30x + 25
=(3x)2+2×3x×5+52= (3x)^2 + 2 \times 3x \times 5 + 5^2
=(3x+5)2= (3x + 5)^2

P
(2x+3)249=(2x+3)272(2x + 3)^2 - 49 = (2x + 3)^2 - 7^2
=[(2x+3)7][(2x+3)+7]= [(2x + 3) - 7][(2x + 3) + 7]
=(2x4)(2x+10)= (2x - 4)(2x + 10)
=2(x2)×2(x+5)= 2(x - 2) \times 2(x + 5)
=4(x2)(x+5)= 4(x - 2)(x + 5)

Q
(4x1)2(2x+3)2(4x - 1)^2 - (2x + 3)^2
=[(4x1)(2x+3)][(4x1)+(2x+3)]= [(4x - 1) - (2x + 3)][(4x - 1) + (2x + 3)]
=(4x12x3)(4x1+2x+3)= (4x - 1 - 2x - 3)(4x - 1 + 2x + 3)
=(2x4)(6x+2)= (2x - 4)(6x + 2)
=2(x2)×2(3x+1)= 2(x - 2)\times 2(3x + 1)
=4(x2)(3x+1)= 4(x - 2)(3x + 1)

R
x316x=x(x216)x^3 - 16x = x(x^2 - 16)
=x(x4)(x+4)= x(x - 4)(x + 4)

S
25x21(4x3)(5x+1)25x^2 - 1 - (4x - 3)(5x + 1)
=(5x)21(4x3)(5x+1)= (5x)^2 - 1 - (4x - 3)(5x + 1)
=(5x1)(5x+1)(4x3)(5x+1)= (5x - 1)(5x + 1) - (4x - 3)(5x + 1)
=(5x+1)[(5x1)(4x3)]= (5x + 1)[(5x - 1) - (4x - 3)]
=(5x+1)(x+2)= (5x + 1)(x + 2)

T
x2+8x+16=x2+2×x×4+42=(x+4)2x^2 + 8x + 16 = x^2 + 2 \times x \times 4 + 4^2 = (x + 4)^2

U
4x24x+1=(2x)22×2x×1+12=(2x1)24x^2 - 4x + 1 = (2x)^2 - 2 \times 2x \times 1 + 1^2 = (2x - 1)^2

V
x264=x282=(x8)(x+8)x^2 - 64 = x^2 - 8^2 = (x - 8)(x + 8)

W
x2+x+0,25=x2+2×x×0,5+0,52=(x+0,5)2x^2 + x + 0,25 = x^2 + 2 \times x \times 0,5 + 0,5^2 = (x + 0,5)^2

X
100x21,000x+2,500=(10x)22×10x×50+502100x^2 - 1,000x + 2,500 = (10x)^2 - 2 \times 10x \times 50 + 50^2
=(10x50)2= (10x - 50)^2
=[10(x5)]2= [10(x - 5)]^2
=100(x5)2= 100(x - 5)^2

Y
16x2814=(4x)2(92)216x^2 - \dfrac{81}{4} = (4x)^2 - \left(\dfrac92\right)^2
=(4x92)(4x+92)= \left(4x - \dfrac92\right)\left(4x + \dfrac92\right)

Z
x27=x2(7)2x^2 - 7 = x^2 - (\sqrt{7})^2
=(x7)(x+7)= (x - \sqrt{7})(x + \sqrt{7})

A'
2x2+2=2(x2+1)2x^2 + 2 = 2(x^2 + 1)

B'
(3x1)2(x+2)2(3x - 1)^2 - (x + 2)^2
=[(3x1)(x+2)][(3x1)+(x+2)]= [(3x - 1) - (x + 2)][(3x - 1) + (x + 2)]
=(3x1x2)(3x1+x+2)= (3x - 1 - x - 2)(3x - 1 + x + 2)
=(2x3)(4x+1)= (2x - 3)(4x + 1)

Voir le contenu associé